Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology

Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology

hpmc

Abstract

In this study, the thermo-gelation behavior of hydroxypropyl methylcellulose (HPMC) and hydroxyethyl methylcellulose (HEMC) were examined by rheology. Temperature sweep shear viscosity measurements revealed a significant decrease in the shear viscosity of HPMC and HEMC at the aggregation temperature (Tagr), which depended on the substitution type (HPMC or HEMC) and degree of substitution. In the dynamic test, G′ decreased slightly at Tagr and increased significantly at the gelation temperature (Tgel). The shear viscosity and shear storage modulus (G′) can be utilized complementarily to examine Tagr and Tgel. Tagr could be detected clearly by the shear viscosity measurement but could not be observed in the G′ measurement. On the other hand, Tgel could not be detected in the shear viscosity measurement although it can be clearly recognized in G′ measurement. Conclusively, the two rheological measurements could be utilized complementarily in detection of Tagr and Tgel. In the meanwhile, HPMC with more hydrophobic residues (methoxy and hydroxypropyl residues) showed smaller Tagr and Tgel than HEMC, which has hydroxyethyl and methoxy groups. Tagr and Tgel decreased with increasing number of hydrophobic groups. Molecular weight almost did not affect Tagr and Tgel of HPMC solution

hpmc download her

References

  1. Bain, M.K., M. Bhowmik, S.N. Ghosh, and D. Chattopadhyay, 2009, In situ fast gelling formulation of methyl cellulose for in vitro ophthalmic controlled delivery of ketorolac tromethamine, J. Appl. Polym. Sci. 113, 1241.CrossRefGoogle Scholar
  2. Bajwa, G.S., C. Sammon, P. Timmins, and C.D. Melia, 2009, Molecular and mechanical properties of hydroxypropyl methylcellulose solutions during the sol:gel transition, Polymer 50, 4571.CrossRefGoogle Scholar
  3. Ban, S.J., C. W. Rico, I.C. Um, and M.Y. Kang, 2012a, Comparative evaluation of the hypolipidemic effects of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) in high fat-fed mice, Food Chem. Toxicol. 50, 130.CrossRefGoogle Scholar
  4. Ban, S.J., C.W. Rico, I.C. Um, and M.Y. Kang, 2012b, Antihyperglycemic and antioxidative effects of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) in mice fed with a high fat diet, Int. J. Mol. Sci. 13, 3738.CrossRefGoogle Scholar
  5. Bhowmik, M, S. Das, J. Sinha, S. Bag, D. Chattopadhyay, and L.K. Ghosh, 2010, Methyl cellulose based sustained release thermosensitive in situ fast gelling ocular delivery of ketorolac tromethamine, Asian J. Chem. 22, 2147.Google Scholar
  6. Blouin, S, M.F. Moreau, P. Weiss, G. Daculsi, M.F. Basle, and D. Chappard, 2006, Evaluation of an injectable bone substitute (beta TCP/hydroxyapatite/hydroxy-propyl-methyl-cellulose) in severely osteopenic and aged rats, J. Biomed. Mater. Res. Part A 78A, 570.CrossRefGoogle Scholar
  7. Bodvik, R., A. Dedinaite, L. Karlson, M. Bergstrom, P. Baverback, J.S. Pedersen, K. Edwards, G. Karlsson, I. Varga, and P.M. Claesson, 2010, Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions, Colloid Surf. A-Physicochem Eng. Asp. 354, 162.CrossRefGoogle Scholar
  8. Campos-Aldrete, M.E. and L. Villafuerte-Robles, 1997, Influence of the viscosity grade and the particle size of HPMC on metronidazole release from matrix tablets, Eur. J. Pharm. Biopharm. 43, 173.CrossRefGoogle Scholar
  9. Chen, Y.H., M. Zhang, W.T. Liu, and G.Y. Li, 2011, Properties of alkali-solubilized collagen solution crosslinked by N-hydroxysuccinimide activated adipic acid, Korea-Aust. Rheol. J. 23, 41.CrossRefGoogle Scholar
  10. Chirico, S., A. Dalmoro, G. Lamberti, G. Russo, and G. Titomanlio, 2007, Analysis and modeling of swelling and erosion behavior for pure HPMC tablet, J. Control. Release 122, 181.CrossRefGoogle Scholar
  11. Ferry, J.K., 1980, Viscoelastic properties of polymers, 3rd edn. Wiley, New York.Google Scholar
  12. Hussain, S., C. Keary, and D.Q.M. Craig, 2003, A thermorheological investigation into the gelation and phase separation of hydroxypropyl methylcellulose aqueous systems, Polymer 43, 5623.CrossRefGoogle Scholar
  13. Hyun K., H.T. Lim, and K.H. Ahn, 2012, Nonlinear response of polypropylene (PP)/Clay nanocomposites under dynamic oscillatory shear flow, Korea-Aust. Rheol. J. 24, 113.CrossRefGoogle Scholar
  14. Kita, R., T. Kaku, K. Kubota, and T. Dobashi, 1999, Pinning of phase separation of aqueous solution of hydroxypropylmethylcellulose by gelation, Phys. Lett. A 259, 302.CrossRefGoogle Scholar
  15. Kobayashi, K., C.L. Huang, and T.P. Lodge, 1999, Thermoreversible gelation of aqueous methylcellulose solutions, Macromolecules 32, 7070.CrossRefGoogle Scholar
  16. Liu, S.Q., S.C. Joshi, and Y.C. Lam, 2008a, Effects of salts in the Hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels, J. Appl. Polym. Sci. 109, 363.CrossRefGoogle Scholar
  17. Liu, S.Q., S.C. Joshi, Y.C. Lam, and K.C. Tam, 2008b, Thermoreversible gelation of hydroxypropylmethylcellulose in simulated body fluids, Carbohyd. Polym. 72, 133.CrossRefGoogle Scholar
  18. Maki, K.C., M.H. Davidson, K.C. Malik, H.H. Albrecht, J. O’Mullane, and B.P. Daggy, 1999, Cholesterol lowering with high-viscosity hydroxypropylmethylcellulose, Am. J. Cardiol. 84, 1198.CrossRefGoogle Scholar
  19. Plank, P., 2003, Applications of biopolymers in construction engineering. In: Steinbuechel A (ed) Biopolymers, Wiley-VCH, Weinheim, 29–۹۵٫Google Scholar
  20. Pouchez, J., A. Peschard, P. Grosseau, R. Guyonnet, B. Guihot, and F. Vallee, 2006, HPMC and HEMC influence on cement hydration, Cem. Concr. Res. 36, 288.CrossRefGoogle Scholar
  21. Sarkar, N., 1979, Thermal gelation properties of methyl and hydroxypropyl methylcellulose, J. Appl. Polym. Sci. 24, 1977.CrossRefGoogle Scholar
  22. Silva, S.M.C., F.V. Pinto, F.E. Antunes, M.G. Miguel, J.J.S. Sousa, and A.A.C.C. Pais, 2008, Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions, J. Colloid Interf. Sci. 327, 333.CrossRefGoogle Scholar
  23. Uslu, I. and A. Aytimur, 2012, Production and characterization of poly(vinyl alcohol)/poly(vinylpyrrolidone) iodine/poly(ethylene glycol) electrospun fibers with (hydroxypropyl)methyl cellulose and aloe vera as promising material for wound dressing, J. Appl. Polym. Sci. 124, 3520.CrossRefGoogle Scholar
  24. Wang, Q.Q. and L. Li, 2005, Effects of molecular weight on thermoreversible gelation and gel elasticity of methylcellulose in aqueous solution, Carbohyd. Polym. 62, 232.CrossRefGoogle Scholar
  25. Williams, R.O., T.D. Reynolds, T.D. Cabelka, M.A. Sykora, and V. Mahaguna, 2002, Investigation of excipient type and level on drug release from controlled release tablets containing HPMC, Pharm. Dev. Technol. 7, 181.CrossRefGoogle Scholar
  26. Yoon, D.S., Y.K. Cho, K.W. Oh, S. Kim, Y.A. Kim, J.I. Han, and G. Lim, 2006, A microfluidic gel valve device using reversible sol-gel transition of methyl cellulose for biomedical application, Microsyst. Technol. 12, 238.CrossRefGoogle Scholar

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *